accelerating

Amazon SageMaker now offers fully managed support for MLflow 3.0 that streamlines AI experimentation and accelerates your generative AI journey from idea to production. This release transforms managed MLflow from experiment tracking to providing end-to-end observability, reducing time-to-market for generative AI development. As customers across industries accelerate their generative AIContinue Reading

The world’s population is expanding at a rapid rate. The growing global population requires innovative solutions to produce food, fiber, and fuel, while restoring natural resources like soil and water and addressing climate change. Bayer Crop Science estimates farmers need to increase crop production by 50% by 2050 to meetContinue Reading

This post was co-written with Renato Nascimento, Felipe Viana, Andre Von Zuben from Articul8. Generative AI is reshaping industries, offering new efficiencies, automation, and innovation. However, generative AI requires powerful, scalable, and resilient infrastructures that optimize large-scale model training, providing rapid iteration and efficient compute utilization with purpose-built infrastructure andContinue Reading

In the competitive world of game development, staying ahead of technological advancements is crucial. Generative AI has emerged as a game changer, offering unprecedented opportunities for game designers to push boundaries and create immersive virtual worlds. At the forefront of this revolution is Stability AI’s cutting-edge text-to-image AI model, StableContinue Reading

This post is co-authored with Sundeep Sardana, Malolan Raman, Joseph Lam, Maitri Shah and Vaibhav Singh from Verisk. Verisk (Nasdaq: VRSK) is a leading strategic data analytics and technology partner to the global insurance industry, empowering clients to strengthen operating efficiency, improve underwriting and claims outcomes, combat fraud, and makeContinue Reading

Companies across various scales and industries are using large language models (LLMs) to develop generative AI applications that provide innovative experiences for customers and employees. However, building or fine-tuning these pre-trained LLMs on extensive datasets demands substantial computational resources and engineering effort. With the increase in sizes of these pre-trainedContinue Reading