accuracy

Amazon Bedrock Model Distillation is generally available, and it addresses the fundamental challenge many organizations face when deploying generative AI: how to maintain high performance while reducing costs and latency. This technique transfers knowledge from larger, more capable foundation models (FMs) that act as teachers to smaller, more efficient modelsContinue Reading

This blog post is co-written with Renuka Kumar and Thomas Matthew from Cisco. Enterprise data by its very nature spans diverse data domains, such as security, finance, product, and HR. Data across these domains is often maintained across disparate data environments (such as Amazon Aurora, Oracle, and Teradata), with eachContinue Reading

Customers need better accuracy to take generative AI applications into production. In a world where decisions are increasingly data-driven, the integrity and reliability of information are paramount. To address this, customers often begin by enhancing generative AI accuracy through vector-based retrieval systems and the Retrieval Augmented Generation (RAG) architectural pattern,Continue Reading

Sentence transformers are powerful deep learning models that convert sentences into high-quality, fixed-length embeddings, capturing their semantic meaning. These embeddings are useful for various natural language processing (NLP) tasks such as text classification, clustering, semantic search, and information retrieval. In this post, we showcase how to fine-tune a sentence transformerContinue Reading

Generative artificial intelligence (AI), particularly Retrieval Augmented Generation (RAG) solutions, are rapidly demonstrating their vast potential to revolutionize enterprise operations. RAG models combine the strengths of information retrieval systems with advanced natural language generation, enabling more contextually accurate and informative outputs. From automating customer interactions to optimizing backend operation processes,Continue Reading

AI chatbots and virtual assistants have become increasingly popular in recent years thanks the breakthroughs of large language models (LLMs). Trained on a large volume of datasets, these models incorporate memory components in their architectural design, allowing them to understand and comprehend textual context. Most common use cases for chatbotContinue Reading

This is a guest post co-written with Vicente Cruz Mínguez, Head of Data and Advanced Analytics at Cepsa Química, and Marcos Fernández Díaz, Senior Data Scientist at Keepler. Generative artificial intelligence (AI) is rapidly emerging as a transformative force, poised to disrupt and reshape businesses of all sizes and acrossContinue Reading