Agents

AI agents are transforming enterprise applications across industries, from customer service to complex decision workflows. As organizations scale these deployments, they face a fundamental question: how can you improve trust in an AI application? The challenge is transparency. AI agents can make decisions on behalf of users, invoke tools dynamically,Continue Reading

This post was written with Lior Heber and Yarden Ron of Skai. Skai (formerly Kenshoo) is an AI-driven omnichannel advertising and analytics platform designed for brands and agencies to plan, launch, optimize, and measure paid media across search, social, retail media marketplaces and other “walled-garden” channels from a single interface.Continue Reading

Basic AI chat isn’t enough for most business applications. Institutions need AI that can pull from their databases, integrate with their existing tools, handle multi-step processes, and make decisions independently. This post demonstrates how to quickly build sophisticated AI agents using Strands Agents, scale them reliably with Amazon Bedrock AgentCore,Continue Reading

When deploying AI agents to Amazon Bedrock AgentCore Runtime (currently in preview), customers often want to use custom domain names to create a professional and seamless experience. By default, AgentCore Runtime agents use endpoints like https://bedrock-agentcore.{region}.amazonaws.com/runtimes/{EncodedAgentARN}/invocations. In this post, we discuss how to transform these endpoints into user-friendly custom domainsContinue Reading

Machine learning (ML) has evolved from an experimental phase to becoming an integral part of business operations. Organizations now actively deploy ML models for precise sales forecasting, customer segmentation, and churn prediction. While traditional ML continues to transform business processes, generative AI has emerged as a revolutionary force, introducing powerfulContinue Reading

Organizations are increasingly excited about the potential of AI agents, but many find themselves stuck in what we call “proof of concept purgatory”—where promising agent prototypes struggle to make the leap to production deployment. In our conversations with customers, we’ve heard consistent challenges that block the path from experimentation toContinue Reading

Agentic AI is revolutionizing the financial services industry through its ability to make autonomous decisions and adapt in real time, moving well beyond traditional automation. Imagine an AI assistant that can analyze quarterly earnings reports, compare them against industry expectations, and generate insights about future performance. This seemingly straightforward taskContinue Reading

AI assistants that forget what you told them 5 minutes ago aren’t very helpful. While large language models (LLMs) excel at generating human-like responses, they are fundamentally stateless—they don’t retain information between interactions. This forces developers to build custom memory systems to track conversation history, remember user preferences, and maintainContinue Reading

AI agents are rapidly transforming enterprise operations. Although a single agent can perform specific tasks effectively, complex business processes often span multiple systems, requiring data retrieval, analysis, decision-making, and action execution across different systems. With multi-agent collaboration, specialized AI agents can work together to automate intricate workflows. This post exploresContinue Reading