application

Agentic Retrieval Augmented Generation (RAG) applications represent an advanced approach in AI that integrates foundation models (FMs) with external knowledge retrieval and autonomous agent capabilities. These systems dynamically access and process information, break down complex tasks, use external tools, apply reasoning, and adapt to various contexts. They go beyond simpleContinue Reading

Organizations today deal with vast amounts of unstructured data in various formats including documents, images, audio files, and video files. Often these documents are quite large, creating significant challenges such as slower processing times and increased storage costs. Extracting meaningful insights from these diverse formats in the past required complexContinue Reading

With Amazon Bedrock Evaluations, you can evaluate foundation models (FMs) and Retrieval Augmented Generation (RAG) systems, whether hosted on Amazon Bedrock or another model or RAG system hosted elsewhere, including Amazon Bedrock Knowledge Bases or multi-cloud and on-premises deployments. We recently announced the general availability of the large language modelContinue Reading

SQL is one of the key languages widely used across businesses, and it requires an understanding of databases and table metadata. This can be overwhelming for nontechnical users who lack proficiency in SQL. Today, generative AI can help bridge this knowledge gap for nontechnical users to generate SQL queries byContinue Reading

AWS offers powerful generative AI services, including Amazon Bedrock, which allows organizations to create tailored use cases such as AI chat-based assistants that give answers based on knowledge contained in the customers’ documents, and much more. Many businesses want to integrate these cutting-edge AI capabilities with their existing collaboration tools,Continue Reading

Recently, we’ve been witnessing the rapid development and evolution of generative AI applications, with observability and evaluation emerging as critical aspects for developers, data scientists, and stakeholders. Observability refers to the ability to understand the internal state and behavior of a system by analyzing its outputs, logs, and metrics. Evaluation,Continue Reading