batch

As organizations increasingly adopt foundation models (FMs) for their artificial intelligence and machine learning (AI/ML) workloads, managing large-scale inference operations efficiently becomes crucial. Amazon Bedrock supports two general types of large-scale inference patterns: real-time inference and batch inference for use cases that involve processing massive datasets where immediate results aren’tContinue Reading

Picture this: your machine learning (ML) team has a promising model to train and experiments to run for their generative AI project, but they’re waiting for GPU availability. The ML scientists spend time monitoring instance availability, coordinating with teammates over shared resources, and managing infrastructure allocation. Simultaneously, your infrastructure administratorsContinue Reading

This post was co-written with Vishal Singh, Data Engineering Leader at Data & Analytics team of GoDaddy Generative AI solutions have the potential to transform businesses by boosting productivity and improving customer experiences, and using large language models (LLMs) in these solutions has become increasingly popular. However, inference of LLMsContinue Reading

Real-world applications vary in inference requirements for their artificial intelligence and machine learning (AI/ML) solutions to optimize performance and reduce costs. Examples include financial systems processing transaction data streams, recommendation engines processing user activity data, and computer vision models processing video frames. In these scenarios, customized model monitoring for nearContinue Reading

Today, we are excited to announce general availability of batch inference for Amazon Bedrock. This new feature enables organizations to process large volumes of data when interacting with foundation models (FMs), addressing a critical need in various industries, including call center operations. Call center transcript summarization has become an essentialContinue Reading

In large language model (LLM) training, effective orchestration and compute resource management poses a significant challenge. Automation of resource provisioning, scaling, and workflow management is vital for optimizing resource usage and streamlining complex workflows, thereby achieving efficient deep learning training processes. Simplified orchestration enables researchers and practitioners to focus moreContinue Reading