Customized

Open foundation models (FMs) allow organizations to build customized AI applications by fine-tuning for their specific domains or tasks, while retaining control over costs and deployments. However, deployment can be a significant portion of the effort, often requiring 30% of project time because engineers must carefully optimize instance types andContinue Reading

Real-world applications vary in inference requirements for their artificial intelligence and machine learning (AI/ML) solutions to optimize performance and reduce costs. Examples include financial systems processing transaction data streams, recommendation engines processing user activity data, and computer vision models processing video frames. In these scenarios, customized model monitoring for nearContinue Reading