Developer

Organizations can optimize their migration and modernization projects by streamlining the containerization process for legacy applications. With the right tools and approaches, teams can transform traditional applications into containerized solutions efficiently, reducing the time spent on manual coding, testing, and debugging while enhancing developer productivity and accelerating time-to-market. During containerizationContinue Reading

IT teams face mounting challenges as they manage increasingly complex infrastructure and applications, often spending countless hours manually identifying operational issues, troubleshooting problems, and performing repetitive maintenance tasks. This operational burden diverts valuable technical resources from innovation and strategic initiatives. Artificial intelligence for IT operations (AIOps) presents a transformative solution,Continue Reading

Data science teams working with artificial intelligence and machine learning (AI/ML) face a growing challenge as models become more complex. While Amazon Deep Learning Containers (DLCs) offer robust baseline environments out-of-the-box, customizing them for specific projects often requires significant time and expertise. In this post, we explore how to useContinue Reading

Adobe Inc. excels in providing a comprehensive suite of creative tools that empower artists, designers, and developers across various digital disciplines. Their product landscape is the backbone of countless creative projects worldwide, ranging from web design and photo editing to vector graphics and video production. Adobe’s internal developers use aContinue Reading

This blog post is co-written with Jonas Neuman from HERE Technologies.  HERE Technologies, a 40-year pioneer in mapping and location technology, collaborated with the AWS Generative AI Innovation Center (GenAIIC) to enhance developer productivity with a generative AI-powered coding assistant. This innovative tool is designed to enhance the onboarding experienceContinue Reading

Machine learning (ML) projects are inherently complex, involving multiple intricate steps—from data collection and preprocessing to model building, deployment, and maintenance. Data scientists face numerous challenges throughout this process, such as selecting appropriate tools, needing step-by-step instructions with code samples, and troubleshooting errors and issues. These iterative challenges can hinderContinue Reading