generative (Page 10)

This post is co-authored with Nishant Gupta from InsuranceDekho. The insurance industry is complex and overwhelming, with numerous options that can be hard for consumers to understand. This complexity hinders customers from making informed decisions. As a result, customers face challenges in selecting the right insurance coverage, while insurance aggregatorsContinue Reading

Principal is a global financial company with nearly 20,000 employees passionate about improving the wealth and well-being of people and businesses. In business for 145 years, Principal is helping approximately 64 million customers (as of Q2, 2024) plan, protect, invest, and retire, while working to support the communities where itContinue Reading

Live streaming has been gaining immense popularity in recent years, attracting an ever-growing number of viewers and content creators across various platforms. From gaming and entertainment to education and corporate events, live streams have become a powerful medium for real-time engagement and content consumption. However, as the reach of liveContinue Reading

The financial and banking industry can significantly enhance investment research by integrating generative AI into daily tasks like financial statement analysis. By taking advantage of advanced natural language processing (NLP) capabilities and data analysis techniques, you can streamline common tasks like these in the financial industry: Automating data extraction –Continue Reading

This post is co-written with Etzik Bega from Agmatix. Agmatix is an Agtech company pioneering data-driven solutions for the agriculture industry that harnesses advanced AI technologies, including generative AI, to expedite R&D processes, enhance crop yields, and advance sustainable agriculture. Focused on addressing the challenge of agricultural data standardization, AgmatixContinue Reading

In this blog post, we demonstrate prompt engineering techniques to generate accurate and relevant analysis of tabular data using industry-specific language. This is done by providing large language models (LLMs) in-context sample data with features and labels in the prompt. The results are similar to fine-tuning LLMs without the complexitiesContinue Reading

Generative AI models have seen tremendous growth, offering cutting-edge solutions for text generation, summarization, code generation, and question answering. Despite their versatility, these models often struggle when applied to niche or domain-specific tasks because their pre-training is typically based on large, generalized datasets. To address these gaps and maximize theirContinue Reading

This post is co-written with Steven Craig from Hearst.  To maintain their competitive edge, organizations are constantly seeking ways to accelerate cloud adoption, streamline processes, and drive innovation. However, Cloud Center of Excellence (CCoE) teams often can be perceived as bottlenecks to organizational transformation due to limited resources and overwhelmingContinue Reading