hallucinations

Large language models (LLMs) excel at generating human-like text but face a critical challenge: hallucination—producing responses that sound convincing but are factually incorrect. While these models are trained on vast amounts of generic data, they often lack the organization-specific context and up-to-date information needed for accurate responses in business settings.Continue Reading

Hallucinations in large language models (LLMs) refer to the phenomenon where the LLM generates an output that is plausible but factually incorrect or made-up. This can occur when the model’s training data lacks the necessary information or when the model attempts to generate coherent responses by making logical inferences beyondContinue Reading