inference

Organizations are increasingly integrating generative AI capabilities into their applications to enhance customer experiences, streamline operations, and drive innovation. As generative AI workloads continue to grow in scale and importance, organizations face new challenges in maintaining consistent performance, reliability, and availability of their AI-powered applications. Customers are looking to scaleContinue Reading

Fraud continues to cause significant financial damage globally, with U.S. consumers alone losing $12.5 billion in 2024—a 25% increase from the previous year according to the Federal Trade Commission. This surge stems not from more frequent attacks, but from fraudsters’ increasing sophistication. As fraudulent activities become more complex and interconnected, conventionalContinue Reading

At Amazon, our team builds Rufus, a generative AI-powered shopping assistant that serves millions of customers at immense scale. However, deploying Rufus at scale introduces significant challenges that must be carefully navigated. Rufus is powered by a custom-built large language model (LLM). As the model’s complexity increased, we prioritized developingContinue Reading

Organizations serving multiple tenants through AI applications face a common challenge: how to track, analyze, and optimize model usage across different customer segments. Although Amazon Bedrock provides powerful foundation models (FMs) through its Converse API, the true business value emerges when you can connect model interactions to specific tenants, users,Continue Reading

Successful generative AI software as a service (SaaS) systems require a balance between service scalability and cost management. This becomes critical when building a multi-tenant generative AI service designed to serve a large, diverse customer base while maintaining rigorous cost controls and comprehensive usage monitoring. Traditional cost management approaches forContinue Reading

This post is co-written with Kshitiz Gupta, Wenhan Tan, Arun Raman, Jiahong Liu, and Eiluth Triana Isaza from NVIDIA. As large language models (LLMs) and generative AI applications become increasingly prevalent, the demand for efficient, scalable, and low-latency inference solutions has grown. Traditional inference systems often struggle to meet theseContinue Reading

Amazon SageMaker Inference has been a popular tool for deploying advanced machine learning (ML) and generative AI models at scale. As AI applications become increasingly complex, customers want to deploy multiple models in a coordinated group that collectively process inference requests for an application. In addition, with the evolution ofContinue Reading