model (Page 5)

Evaluating large language models (LLMs) is crucial as LLM-based systems become increasingly powerful and relevant in our society. Rigorous testing allows us to understand an LLM’s capabilities, limitations, and potential biases, and provide actionable feedback to identify and mitigate risk. Furthermore, evaluation processes are important not only for LLMs, butContinue Reading

In this post, I’ll show you how to use Amazon Bedrock—with its fully managed, on-demand API—with your Amazon SageMaker trained or fine-tuned model. Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading AI companies such as AI21 Labs, Anthropic, Cohere, Meta,Continue Reading

This post is co-written with Marta Cavalleri and Giovanni Germani from Fastweb, and Claudia Sacco and Andrea Policarpi from BIP xTech. AI’s transformative impact extends throughout the modern business landscape, with telecommunications emerging as a key area of innovation. Fastweb, one of Italy’s leading telecommunications operators, recognized the immense potentialContinue Reading

In Part 1 of this series, we introduced Amazon SageMaker Fast Model Loader, a new capability in Amazon SageMaker that significantly reduces the time required to deploy and scale large language models (LLMs) for inference. We discussed how this innovation addresses one of the major bottlenecks in LLM deployment: the timeContinue Reading

The generative AI landscape has been rapidly evolving, with large language models (LLMs) at the forefront of this transformation. These models have grown exponentially in size and complexity, with some now containing hundreds of billions of parameters and requiring hundreds of gigabytes of memory. As LLMs continue to expand, AIContinue Reading

Large language models (LLMs) have witnessed an unprecedented surge in popularity, with customers increasingly using publicly available models such as Llama, Stable Diffusion, and Mistral. Across diverse industries—including healthcare, finance, and marketing—organizations are now engaged in pre-training and fine-tuning these increasingly larger LLMs, which often boast billions of parameters andContinue Reading

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM), making it easier to securely share and discover machine learning (ML) models across your AWS accounts. Customers find it challenging to share and access ML models across AWS accounts becauseContinue Reading