multitenant

In recent years, the emergence of large language models (LLMs) has accelerated AI adoption across various industries. However, to further augment LLMs’ capabilities and effectively use up-to-date information and domain-specific knowledge, integration with external data sources is essential. Retrieval Augmented Generation (RAG) has gained attention as an effective approach toContinue Reading

Successful generative AI software as a service (SaaS) systems require a balance between service scalability and cost management. This becomes critical when building a multi-tenant generative AI service designed to serve a large, diverse customer base while maintaining rigorous cost controls and comprehensive usage monitoring. Traditional cost management approaches forContinue Reading

Managing access control in enterprise machine learning (ML) environments presents significant challenges, particularly when multiple teams share Amazon SageMaker AI resources within a single Amazon Web Services (AWS) account. Although Amazon SageMaker Studio provides user-level execution roles, this approach becomes unwieldy as organizations scale and team sizes grow. Refer toContinue Reading

Generative AI continues to reshape how businesses approach innovation and problem-solving. Customers are moving from experimentation to scaling generative AI use cases across their organizations, with more businesses fully integrating these technologies into their core processes. This evolution spans across lines of business (LOBs), teams, and software as a serviceContinue Reading

The number of generative artificial intelligence (AI) features is growing within software offerings, especially after market-leading foundational models (FMs) became consumable through an API using Amazon Bedrock. Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models from leading AI companies like AI21 Labs, Anthropic,Continue Reading