part

Data science teams often face challenges when transitioning models from the development environment to production. These include difficulties integrating data science team’s models into the IT team’s production environment, the need to retrofit data science code to meet enterprise security and governance standards, gaining access to production grade data, andContinue Reading

Amazon SageMaker has redesigned its Python SDK to provide a unified object-oriented interface that makes it straightforward to interact with SageMaker services. The new SDK is designed with a tiered user experience in mind, where the new lower-level SDK (SageMaker Core) provides access to full breadth of SageMaker features andContinue Reading

In Part 1 of this series, we introduced Amazon SageMaker Fast Model Loader, a new capability in Amazon SageMaker that significantly reduces the time required to deploy and scale large language models (LLMs) for inference. We discussed how this innovation addresses one of the major bottlenecks in LLM deployment: the timeContinue Reading

The generative AI landscape has been rapidly evolving, with large language models (LLMs) at the forefront of this transformation. These models have grown exponentially in size and complexity, with some now containing hundreds of billions of parameters and requiring hundreds of gigabytes of memory. As LLMs continue to expand, AIContinue Reading

In Part 1 of this series, we explored best practices for creating accurate and reliable agents using Amazon Bedrock Agents. Amazon Bedrock Agents help you accelerate generative AI application development by orchestrating multistep tasks. Agents use the reasoning capability of foundation models (FMs) to create a plan that decomposes theContinue Reading