RAG

Retrieval Augmented Generation (RAG) is a fundamental approach for building advanced generative AI applications that connect large language models (LLMs) to enterprise knowledge. However, crafting a reliable RAG pipeline is rarely a one-shot process. Teams often need to test dozens of configurations (varying chunking strategies, embedding models, retrieval techniques, andContinue Reading

Chat-based assistants powered by Retrieval Augmented Generation (RAG) are transforming customer support, internal help desks, and enterprise search, by delivering fast, accurate answers grounded in your own data. With RAG, you can use a ready-to-deploy foundation model (FM) and enrich it with your own data, making responses relevant and context-awareContinue Reading

This post is co-written with Abhinav Pandey from Nippon Life India Asset Management Ltd. Accurate information retrieval through generative AI-powered assistants is a popular use case for enterprises. To reduce hallucination and improve overall accuracy, Retrieval Augmented Generation (RAG) remains the most commonly used method to retrieve reliable and accurateContinue Reading

In recent years, the emergence of large language models (LLMs) has accelerated AI adoption across various industries. However, to further augment LLMs’ capabilities and effectively use up-to-date information and domain-specific knowledge, integration with external data sources is essential. Retrieval Augmented Generation (RAG) has gained attention as an effective approach toContinue Reading

Vector embeddings have become essential for modern Retrieval Augmented Generation (RAG) applications, but organizations face significant cost challenges as they scale. As knowledge bases grow and require more granular embeddings, many vector databases that rely on high-performance storage such as SSDs or in-memory solutions become prohibitively expensive. This cost barrierContinue Reading

Organizations are adopting large language models (LLMs), such as DeepSeek R1, to transform business processes, enhance customer experiences, and drive innovation at unprecedented speed. However, standalone LLMs have key limitations such as hallucinations, outdated knowledge, and no access to proprietary data. Retrieval Augmented Generation (RAG) addresses these gaps by combiningContinue Reading

Data is your generative AI differentiator, and successful generative AI implementation depends on a robust data strategy incorporating a comprehensive data governance approach. Traditional data architectures often struggle to meet the unique demands of generative such as applications. An effective generative AI data strategy requires several key components like seamlessContinue Reading

Generative AI has revolutionized customer interactions across industries by offering personalized, intuitive experiences powered by unprecedented access to information. This transformation is further enhanced by Retrieval Augmented Generation (RAG), a technique that allows large language models (LLMs) to reference external knowledge sources beyond their training data. RAG has gained popularityContinue Reading

In the pharmaceutical industry, biotechnology and healthcare companies face an unprecedented challenge for efficiently managing and analyzing vast amounts of drug-related data from diverse sources. Traditional data analysis methods prove inadequate for processing complex medical documentation that includes a mix of text, images, graphs, and tables. Amazon Bedrock offers featuresContinue Reading

Agentic Retrieval Augmented Generation (RAG) applications represent an advanced approach in AI that integrates foundation models (FMs) with external knowledge retrieval and autonomous agent capabilities. These systems dynamically access and process information, break down complex tasks, use external tools, apply reasoning, and adapt to various contexts. They go beyond simpleContinue Reading