responses

This post is co-written with Abhinav Pandey from Nippon Life India Asset Management Ltd. Accurate information retrieval through generative AI-powered assistants is a popular use case for enterprises. To reduce hallucination and improve overall accuracy, Retrieval Augmented Generation (RAG) remains the most commonly used method to retrieve reliable and accurateContinue Reading

Improving response quality for user queries is essential for AI-driven applications, especially those focusing on user satisfaction. For example, an HR chat-based assistant should strictly follow company policies and respond using a certain tone. A deviation from that can be corrected by feedback from users. This post demonstrates how AmazonContinue Reading

In the rapidly evolving landscape of artificial intelligence, Retrieval Augmented Generation (RAG) has emerged as a game-changer, revolutionizing how Foundation Models (FMs) interact with organization-specific data. As businesses increasingly rely on AI-powered solutions, the need for accurate, context-aware, and tailored responses has never been more critical. Enter the powerful trioContinue Reading