Services (Page 8)

Managing access control in enterprise machine learning (ML) environments presents significant challenges, particularly when multiple teams share Amazon SageMaker AI resources within a single Amazon Web Services (AWS) account. Although Amazon SageMaker Studio provides user-level execution roles, this approach becomes unwieldy as organizations scale and team sizes grow. Refer toContinue Reading

Today, we announce the public preview of long-running execution (asynchronous) flow support within Amazon Bedrock Flows. With Amazon Bedrock Flows, you can link foundation models (FMs), Amazon Bedrock Prompt Management, Amazon Bedrock Agents, Amazon Bedrock Knowledge Bases, Amazon Bedrock Guardrails, and other AWS services together to build and scale predefinedContinue Reading

Fraud detection remains a significant challenge in the financial industry, requiring advanced machine learning (ML) techniques to detect fraudulent patterns while maintaining compliance with strict privacy regulations. Traditional ML models often rely on centralized data aggregation, which raises concerns about data security and regulatory constraints. Fraud cost businesses over $485.6Continue Reading

The global fashion industry is estimated to be valued at $1.84 trillion in 2025, accounting for approximately 1.63% of the world’s GDP (Statista, 2025). With such massive amounts of generated capital, so too comes the enormous potential for toxic content and misuse. In the fashion industry, teams are frequently innovatingContinue Reading

As AI models become increasingly sophisticated and specialized, the ability to quickly train and customize models can mean the difference between industry leadership and falling behind. That is why hundreds of thousands of customers use the fully managed infrastructure, tools, and workflows of Amazon SageMaker AI to scale and advanceContinue Reading

AI developers and machine learning (ML) engineers can now use the capabilities of Amazon SageMaker Studio directly from their local Visual Studio Code (VS Code). With this capability, you can use your customized local VS Code setup, including AI-assisted development tools, custom extensions, and debugging tools while accessing compute resourcesContinue Reading

Today, we’re excited to announce that Amazon SageMaker HyperPod now supports deploying foundation models (FMs) from Amazon SageMaker JumpStart, as well as custom or fine-tuned models from Amazon S3 or Amazon FSx. With this launch, you can train, fine-tune, and deploy models on the same HyperPod compute resources, maximizing resourceContinue Reading

Amazon SageMaker HyperPod now provides a comprehensive, out-of-the-box dashboard that delivers insights into foundation model (FM) development tasks and cluster resources. This unified observability solution automatically publishes key metrics to Amazon Managed Service for Prometheus and visualizes them in Amazon Managed Grafana dashboards, optimized specifically for FM development with deepContinue Reading

Amazon SageMaker now offers fully managed support for MLflow 3.0 that streamlines AI experimentation and accelerates your generative AI journey from idea to production. This release transforms managed MLflow from experiment tracking to providing end-to-end observability, reducing time-to-market for generative AI development. As customers across industries accelerate their generative AIContinue Reading