Studio

Although rapid generative AI advancements are revolutionizing organizational natural language processing tasks, developers and data scientists face significant challenges customizing these large models. These hurdles include managing complex workflows, efficiently preparing large datasets for fine-tuning, implementing sophisticated fine-tuning techniques while optimizing computational resources, consistently tracking model performance, and achieving reliable,Continue Reading

Organizations face the challenge to manage data, multiple artificial intelligence and machine learning (AI/ML) tools, and workflows across different environments, impacting productivity and governance. A unified development environment consolidates data processing, model development, and AI application deployment into a single system. This integration streamlines workflows, enhances collaboration, and accelerates AIContinue Reading

Modern generative AI model providers require unprecedented computational scale, with pre-training often involving thousands of accelerators running continuously for days, and sometimes months. Foundation Models (FMs) demand distributed training clusters — coordinated groups of accelerated compute instances, using frameworks like PyTorch — to parallelize workloads across hundreds of accelerators (likeContinue Reading

AWS App Studio is a generative AI-powered service that uses natural language to build business applications, empowering a new set of builders to create applications in minutes. With App Studio, technical professionals such as IT project managers, data engineers, enterprise architects, and solution architects can quickly develop applications tailored toContinue Reading

Today we are announcing that general availability of Amazon Bedrock in Amazon SageMaker Unified Studio. Companies of all sizes face mounting pressure to operate efficiently as they manage growing volumes of data, systems, and customer interactions. Manual processes and fragmented information sources can create bottlenecks and slow decision-making, limiting teamsContinue Reading

Building generative AI applications presents significant challenges for organizations: they require specialized ML expertise, complex infrastructure management, and careful orchestration of multiple services. To address these challenges, we introduce Amazon Bedrock IDE, an integrated environment for developing and customizing generative AI applications. Formerly known as Amazon Bedrock Studio, Amazon BedrockContinue Reading

Scaling machine learning (ML) workflows from initial prototypes to large-scale production deployment can be daunting task, but the integration of Amazon SageMaker Studio and Amazon SageMaker HyperPod offers a streamlined solution to this challenge. As teams progress from proof of concept to production-ready models, they often struggle with efficiently managingContinue Reading