Supercharge

This post is co-written with Andrew Liu, Chelsea Isaac, Zoey Zhang, and Charlie Huang from NVIDIA. DGX Cloud on Amazon Web Services (AWS) represents a significant leap forward in democratizing access to high-performance AI infrastructure. By combining NVIDIA GPU expertise with AWS scalable cloud services, organizations can accelerate their time-to-train,Continue Reading

AI developers and machine learning (ML) engineers can now use the capabilities of Amazon SageMaker Studio directly from their local Visual Studio Code (VS Code). With this capability, you can use your customized local VS Code setup, including AI-assisted development tools, custom extensions, and debugging tools while accessing compute resourcesContinue Reading

Prompt caching in Amazon Bedrock is now generally available, delivering performance and cost benefits for agentic AI applications. Coding assistants that process large codebases represent an ideal use case for prompt caching. In this post, we’ll explore how to combine Amazon Bedrock prompt caching with Claude Code—a coding agent releasedContinue Reading

Today at AWS re:Invent 2024, we are excited to announce the new Container Caching capability in Amazon SageMaker, which significantly reduces the time required to scale generative AI  models for inference. This innovation allows you to scale your models faster, observing up to 56% reduction in latency when scaling aContinue Reading